

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Sem Exam July 2023

Program:

M.Tech - Structural Engineering

Duration: 3 hr

Course Code: PC-MST201

Maximum Points: 100

Course Name: Finite Element Analysis

Semester: II

F.y.M. Tech (Structural engg.) Sem-II Notes:

1. Attempt any five questions.

2. Assume appropriate data wherever required.

Q. No.	Questions	Points	СО	BL	Modul No.
1a	For the spring assemblage shown below, calculate reaction forces. Also calculate displacement at point X-X 20kN 20kN 20kN 2k, L2 2k, L2 L3 L3 L3 K=10000 Nlmm	12	1,2	3	4
1b	Derive shape functions for eight noded rectangular element using Lagrangian Interpolation function.	08	1	3	
2a	Solve the following differential equation using Galerkins Method Least Square Method Point Collocation Method	00	1	3	1
	Φ"- $Φ$ = X Use Boundary Conditions $Φ(x=0)$ =0and $Φ(x=1)$ =1	15	1	3	1
2b	Derive shape function for three noded line element.	05			
3	Analyse the beam and find defection at X-X X 30kN 10kN 20kN 20kN 30kN EL 2m 1m 2m 5m 3m 7m EL 5 E=200hPa, 9=2x10 m x	05	1	2	1
	EI = L=200hPa, g=2x10 m x	20	1,2	3	5

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Sem Exam July 2023

	End Seni Exam July 2023				
4a	Write short notes on shape functions and their uses in finite				
	element analysis. A circular shaft is subjected to torque T2 = 1 T2 = 1 = 1 = 1	05	1	2	3
	A circular shaft is subjected to torques T2 and T3 as shown in the				
	diagram. By employing one-dimension torsion elements compute				
	angular rotations at nodes 2 and 3 and reactive torque at nodes 1 and 4				
4b	and 4 T2=T T3=3T T2=T T3=3T T3=3T				
		15	1,2	3	3
5a	Derive the shape function for a CST element starting from the	1,5	1,2	3	3
Ja	first principle.	8	1,2	3	3
	Two -dimensional model of an anchor plate of a communication		1 -2-	T	-
	towers guy cable is shown in the fig. The anchor consists of a				
	triangular steel plate, which is subjected to a force of		ĺ		
	30kN. Analyse the anchor plate. Thickness of plate is 7mm. E= 175 GPa and $v = 0.3$				
5b	175GPa and $v=0.3$ $P=30kN$				
	b=h=10m				
		10	1.0		
-	Similarity & differences between the plane stress and plain strain	12	1,2	3	4
5c	elements.	05	1,2	2	
	Analyse the plane frame shown in the fig using FEM. Consider	<u> </u>	1,2	4	
6	E=300GPa, I=10-4 m4 and A=0.01 m2				1
U	AAB L. PA		İ		
	E-300 LPA 20 KN 4m				
	E=300 hPa 20 kN 4m				
	A Company	20	1,2	3	5
	Analyse beam system shown using FEM.		1,2		
	10kN/m 20kN 30kN/m				
	Okicit				
7					
7	A AZM IB 3M A				
	3 mlaPa				
	1 = 100 = 4 4				
	= 100 hPa D=4x10 M	20	12	2	5
		<u> 40</u>	1,2	3	5

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examination

July - 2023

Max. Marks: 100

Class: M.Tech.

Semester: II

Name of the Course: Earthquake Engineering

Program: CivilEngg 2011
Control Code 1973

Instructions: F.Y.M. Tech (Stryctural engg.) Sem-II

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly

Question No		Max. Mar ks	Course outcome	Module No.
Q1 (a)	Answer the followings: (i) What is seismic zone factor? Explain briefly its significance	2		
,	(ii) Briefly explain the Plate Tectonic Theory of an earthquake occurrence	4		
	The plan of one story building is as shown in figure. The			
	structure consists of a roof idealized as a rigid diaphragm, supported on four corner columns as shown in figure. The roof weight is uniformly distributed and has magnitude 200 kg/m ² . The plan dimensions are b= 30 m d=20m. Height of the building is 6m.			
Q1 (b)	(i) Derive the stiffness matrix and determine the natural frequencies and modes shapes of vibrations of the structure	8	2	1
- · · /	(ii)As a special case, if all columns are of the same size, 300 mm x 600 mm, and if the system is subjected to the ground motion only in X direction, the response spectrum of which is shown in figure 1. Determine the design value of lateral deformation, base shear and bending moment for the system.	6	2,3	4

	4		,	
	3001 ///// I 300			
	L600-1			
	(i) A single-storey frame with a rigid girder as shown in the figure below is to be designed for ground motion, the response spectrum of which is shown in Figure 1. Determine the design value of lateral deformation and bending moments in the columns	3	2,3	1,4
	(ii) If the columns of the frame are hinged at the base, determine the design values of lateral deformation and bending moments in columns. Comment on the influence of base fixity on the design deformation and bending moments.	3	2,3	1,4
Q2 (a)	(iii) If the beam cross-section is much smaller than that of columns, so the beam stiffness can be neglected, and columns are fixed at the bottom, determine the design values of lateral deformation and bending moments in columns. Compare the design values with the case i above	4	2,3	1,4
	200 KJ . C/5 of col E = 20	uma ,000	300 mm	X 300 ma
	10m 74	- 10		
	A two-storey frame with free vibration characteristics as given below is subjected to a ground motion defined by $u_g(t) = u_{g0} \sin \omega t$ where $ug_0 = 0.2g$ and $\omega = 15$ rad/sec. Calculate the maximum displacements of each story. Assume damping ratio $\xi = 5\%$.	10	2,3	4
Q2 (b)	Floor Mass Mode ω, Mode shapes No. (t) No. rad/sec			
	Φ_{i1} Φ_{i2}			
	1 85 1 9.714 1.0 1.235			
	2 60 2 30.58 1.0 -1.149			

Q3 (a)	What is response spectrum? Briefly explain the characteristics of response spectrum.	4	3	3
	The plan of one storey building is as shown in figure. The structure consists of a roof idealized as a rigid diaphragm, supported on three frames A, B, and C as shown. The roof weight is uniformly distributed and has magnitude 200 Kg/m ² . The lateral stiffness are K _y = 25000 KN/m for frame A and K _x = 25000 KN/m for frames B and K _x = 30,000 for frame C The plan dimensions are b= 30 m d=25m. The height of building is 8m. (i) In general how many degrees of freedom for this	1	3	1
	system? Identify those dof. (ii) Calculate the stiffness matrix and write the equation of motion if the system is subjected to ground motion	10	1,3	1,4
Q3 (b)	u gx(t) in x direction only. (iii) If Kx = 25,000KN/m for both frames B & C, and e= 0 and the system is subjected to the ground motion only in X direction, the response spectrum of which is shown in figure1. Determine the design value of lateral deformation, base shear and bending moment for the system. Frame C Frame C Frame C Frame C Frame C Frame A C Frame A P Frame C Frame B	5	3	1,4
Q4 (a)	For a residential RCC special moment resisting building frame the seismic weights on floors are W ₁ =2079.1 KN, W ₂ = 2863.9 KN and W ₃ = 1294.3 KN. The ground story height is 4.0m and first and second story height is 3.2m. The building is founded on hard soil and situated in zone IV. Determine the distribution of lateral forces and story shear by using equivalent static method. Use the response spectra given in figure 2	8	4	5

	character motion c but scale	ristics. The haracterized to a pea alues of	ne frame zed by th ak groun lateral d	e is to be he design id acceler leformation	e designe spectrun ation of (g free ved for the given in 0.4g. Calcuors. Use r	ground figure 1 late the	12	4	5
Q4(b)	Storey	Mass	Mass	ω	Mode sl	hapes				
	No.	No.	(t)	rad/sec						
					Φ_{il}	Φ_{i2}	Φ_{i3}			
	1	1	36	4.92	0.336	0.759	1.0	9		
	2	2	36	13.45	-2.46	-0.804	1.0			
	3	3	36	18.7	1.58	-1.157	2.58		·	
Q5 (a)				ements co		cement de -2016.	sign of	4	4	5
Q5 (b)	As per IS	3 1893-20	016, hov	v many n	node nee	d to be cor esponse Sp	nsidered pectrum	2	4	5
Q5 (c)	1893-20					lethod. As		2	4	5
		is permitt	ed to us	e to calcu	late the e	arthquake	forces.			
	Using reon on each given be Z=0.36.	sponse specification is permitted sponse specification in the specification is permitted by the the s	ed to us pectrum the fram the foll R=5.0 ar	method, e whose owing ad	late the e calculate pre vibra ditional c b. Assume	earthquake the seism tion prope lata: e foundation	forces. ic force rties are	12	4	5
Q5 (d)	Using reon each given be Z=0.36, as soft a	sponse specification of the sp	ped to use pectrum the frame the foll R=5.0 are sponse s	method, ne whose owing add $\xi = 5\%$ spectrum	late the e calculate pre vibra ditional c b. Assume given in	earthquake the seism tion prope lata: e foundation	forces. ic force rties are	12	4	5
Q5 (d)	Using reon each given be Z=0.36 as soft a	is permitt sponse sp floor of elow. Use , I =1.2, I and use re	pectrum the fram the foll R=5.0 ar sponse s	e to calcumethod, whose owing add $\xi = 5\%$	late the e calculate pre vibra ditional c Assume given in	earthquake the seism tion proper lata: e foundation figure 3	forces. ic force rties are on strata	12	4	5
Q5 (d)	Using reon each given be Z=0.36, as soft a	sponse sp	pectrum the fram the foll R=5.0 ar esponse s Mass (t)	e to calcumethod, se whose owing add ξ = 5% spectrum	late the e calculate pre vibra ditional co. Assume given in Mode	earthquake the seism tion prope lata: e foundation figure 3 e shapes	forces. ic force rties are on strata	12	4	5
Q5 (d)	Using reon each given be Z=0.36, as soft a	sponse specification of sponse specification of specifica	pectrum the fram the foll R=5,0 ar sponse s Mass (t)	method, whose owing add $\xi = 5\%$ spectrum approximately addressed of the control	late the e calculate pre vibra ditional constitutional constitution and the constitution and	earthquake the seism tion proper lata: e foundation figure 3	forces. ic force rties are on strata Φ_{13} 4.0	12	4	5
Q5 (d)	Using reon each given be Z=0.36, as soft a	sponse sp	pectrum the fram the foll R=5.0 ar esponse s Mass (t)	e to calcumethod, se whose owing add ξ = 5% spectrum	late the e calculate pre vibra ditional co. Assume given in Mode	earthquake the seism tion proper lata: e foundation figure 3 e shapes	forces. ic force rties are on strata	12	4	5
Q5 (d)	Using reon each given be Z=0.36, as soft a Story No.	is permitt sponse sp floor of elow. Use , I = 1.2, I nd use re Mass No.	ed to use pectrum the frame the foll R=5.0 are sponse so (t) 160 120 80	method, whose owing add $\xi = 5\%$ spectrum ω rad/sec 7.12 15.55 20.81	late the e calculate pre vibra ditional co. Assume given in Mode Description Mode 1.0 1.0 1.0	earthquake the seism tion proper lata: e foundation figure 3 Φ_{i2} 1.260 0.0 -1.264	forces. ic force rties are on strata Φ_{13} 4.0 -1.0 4.0			
	Using reconnected on each given be Z=0.36, as soft a Story No.	is permitt sponse sp floor of elow. Use , I = 1.2, I nd use re Mass No.	ed to use pectrum the frame the foll R=5.0 are sponse so (t) 160 120 80	method, whose owing add $\xi = 5\%$ spectrum ω	late the e calculate pre vibra ditional co. Assume given in Mode Description Mode 1.0 1.0 1.0	earthquake the seism tion proper lata: e foundation figure 3 Φ_{i2} 1.260 0.0	forces. ic force rties are on strata Φ_{13} 4.0 -1.0 4.0	3	4	6
Q5 (d) Q 6(a)	Using reconnected given be Z=0.36, as soft a Story No. Story No. 1 2 3 What is earthqual Briefly e (i) When the IS 18	is permitted sponse spo	med to use pectrum the frame the following the following the sponse service with the following the following the following the following provision and the following the f	method, whose owing add $\xi = 5\%$ spectrum 0 0 0 0 0 0 0 0 0 0	late the e calculate pre vibra ditional c o. Assume given in Mode 1.0 1.0 1.0 mportance	earthquake the seism tion proper lata: e foundation figure 3 Φ_{i2} 1.260 0.0 -1.264 ce of duction? Briefly	forces. ic force rties are on strata Φ_{i3} 4.0 -1.0 4.0 tility in			

	(ii) The plan of a simple one-storied building shown in figure 4. All columns have the same dimensions. Obtain the center of stiffness. (Centre of Rigidity).		***************************************	
Q 6(d)	The first floor plan of a building with shear walls is as shown in figure 5. The plinth level plan is also same. Calculate the fundamental period of the building as per the provision of 7.62, of IS 1893-2016 both in X and Y direction. The total height of building is 24 m.	4	4	5
Q 6(e)	For the SMRFs idealized as shear building with rigid girders shown in figure 6, investigate whether the building structure has soft story. The height of first story 13 4.5 m and that of remaining is 3.0 m.	2	4	5
Q 7(a)	Explain the provisions of IS 13920-2016, for (i)Columns longitudinal reinforcement, and transverse reinforcement only (splicing requirements need not be answered)	5	4	6
Q 7(b)	For the beam reinforced as shown in figure 7, design for shear reinforcement as per clause 6.3.3 of IS 13920 2016. Grade of concrete is M26, and that of steel is Fe415	10	4	6
Q 7(c)	Explain in brief the different types of bracings that can be used as lateral load resisting systems in steel structures	5	4	7

Ĺ

28 SPECTRA FOR RESPONSE SPECTRUM METHOD

Fig. 2 Design Acceleration Coefficient (S/g) (Corresponding to 5 Percent Damping)

Table 4 Classification of Types of Soils for Determining the Spectrum to be Used to Estimate Design Earthquake Force
(Clause 6.4.2.1)

Fig. 3

left of the span. (b) Final reinforcement provided at the right of the span. (c) Arrangement of Figure 7. Reinforcement provided at both sides of the section. (a) Final reinforcement provided at the reinforcement for entire length.

, consider top and bottom steel as tensile steel respectively [due to For calculating Mu

AF reversal of moments ? Use Table 50 for calculating The maximum vitimate shear rake due to critical load combinations is 75km

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination - July 2023 Examinations

Duration: 3 Hours

Maximum Points: 100

Semester: II

Program: F.Y.M.Tech (Structural Engineering)

Course Code: EC-MST203

Course Name: Bridge Engineering

Notes: F. Y.M. Tech (Stryctural engg.) Sem-II

1) Attempt any 5 questions out of 7 2) Assume suitable data if missing and mention the same

3) Answers to all sub-questions shall be grouped together

a courbon factor of 0.45

4) Use of IRC 6, IRC 112, and IS 800 is allowed is allowed CO BLPΙ **Points Questions** Q.No. a) Enlist various methods of bridge superstructure erection. 2 2.1.2 Explain in detail any one method with its suitability and 10 4 1) neat sketches b) Explain the Courbon's theory for proportioning the live girders in detail with its assumptions and loads on the limitations. 1.4. 1 3 Calculate the Courbon's factors for 3 girders equally 10 spaced at 2m c/c, the bridge is symmetrical in transverse direction with carriageway of 6 m for 1 lane of IRC class A vehicle loading. a) Design an RCC slab of a solid slab bridge with following details: Effective span = 6mCarriageway width = 7.5m 3.1. 4 3 15 SIDL = 7 kN/m2) 3.2. Wearing course = 75mm thick The bridge is subjected to 1 lane of IRC Class 70R tracked vehicle. Use M35 and Fe500 b) A simply supported span of 20m is supported on fixed (FX) and free bearing (FR) at each end. The width of carriageway is 7.5m. Calculate the braking forces for Class 5 1,3 3 2.4. 70R wheeled vehicle plying on the span. If the reaction from dead load on each bearing is 1000kN, what are the longitudinal forces on each of the bearings? (Assume that the supports are unyielding, $\mu=0.05$) a) Obtain the maximum bending moment at centre and absolute maximum shear force for a girder of span 15m 7 1 4 2.4 subjected to a single class 70R wheeled vehicle and having 3)

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - July 2023 Examinations

	b) Design T-beam girder of span 15m as per IRC 112-2011 with following specifications: UDL on girder due to SIDL = 8kN/m UDL on girder due to wearing course = 2.5kN/m UDL due to slab = 18kN/m Live load as per Q.3(a) Effective slab width as beam flange = 2.4m Depth of slab = 0.25m Use M35 and Fe500	13	3	4	3.1.2 3.2.
4)	For the steel truss bridge shown below: Equivalent UDL due to live loads = 50kN/m SIDL = 10kN/m Use E250grade steel. Design members AC and CD. Also design the connection for member CD	20	3	4	3.1.4 3.2.

5)	a) Explain the behavior of box girder under transverse loads. What are the various techniques for analysis of box girder? Explain the limitations of each.	10	3	2	2.3.1 2.3.2
	b) Calculate the axial load and uniaxial moment carrying capacity of an RCC pier of size 1400 x 1400 mm. The pier has 7 bars of 25mm diameter along each face. Concrete grade is M45 and steel grade is Fe500. Assume: Neutral axis at 450mm from extreme compression fibre. Use rectangular parabolic stress block as per IRC 112-2011	10	3	4	1.4.1 3.1.4
6)	Design a shallow foundation as per IRC 112 for a pier of size 1.25m x 1.25m. The design axial load = 2800kN and design moment along transverse axis = 750kNm. SBC of soil = 165kN/m ² . Use M40 and Fe500. Provide checks for: a) Flexure	20	3	4	3.1.4 3.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - July 2023 Examinations

	b) One way shearc) Punching shear at distance 2 x depth of footing from face of pier and at face of pier				
7)	a) Explain briefly the suitability and components of a cable stayed bridge and load transfer mechanism for such bridge.	10	2	2	3.1.4 3.2.1
	b) Explain the classification of bridges based on i) structural form, ii)Function	05	1	2	2.2.3
	c) Explain the data to be collected for selecting a site for constructing bridge	05	1	2	2.2.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

TERM END EXAMINATION JULY 2023

Program: M. tech Civil (Structural engineering)

Duration: 3 Hr

Course Code: EC MST214

Maximum Points: 100

Course Name: Advanced design of concrete Structures

Semester: II

Notes: 1) Each question carries 20 marks

2) Solve any five questions out of seven questions

	00	m I			
Q.No.	Questions	Points	CO	BL	PI
Q. 1(a)	For a doubly reinforced beam of size 30 cm x 50 cm (overall depth) is provided with 25 cm ² steel as compression and tension reinforcement at effective cover of 5 cm each, calculate ultimate moment carrying capacity of beam. The concrete has a 28 day cube strength of 250 kg/cm ² and steel has compressive and tensile yield stress of 2500 kg/cm ² and 2800 kg/cm ² respectively. Use ultimate load method	14	COI	L6	
Q.1(b)	Explain how limit state of serviceability for deflection and cracking is taken care by various IS 456 clauses	06	CO1	L2	
Q. 2(a)	For the beam shown with the service load, Use load factors 1.8 for dead load and 2.2 for live load. Design the beam using Cambridge method approach. Give checks for rotation required and rotation capacity available. The concrete has a 28 day cube strength of 200 kg/cm² and steel has tensile yield stress of 2500 kg/cm² and 2800 kg/cm² 25T(LL)	20	CO1	L2	
Q.3(b)	Explain the concept of tensile hinge and compression hinge used in Baker's method of analysis	06	CO1	L3	

Blancause Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

COUNTY OF THE PARTY OF THE PART

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

TERM END EXAMINATION JULY 2023

Q. 3(a)	Using the Virtual Work Method, analyze a 250 mm thick reinforced concrete slab spanning 6.0 m x 4.5 m. The slab occupies a corner bay of a floor, which has columns at each corner connected by stiff beams in each direction. The slab can be regarded as being continuous over two adjacent sides and simply supported on the other two. Assume isotropic reinforcement with equal 'm' in each direction. Calculate value of m (assume yield lines formation at an angle of 45 degrees.)	14	CO1	L5
Q.4	For the slab beam arrangement shown calculate design bending moments for slab after redistribution of moments. Design the slab reinforcement. The slabs are subjected to live load of 3.0 Kn/m2 in addition to floor load 1 Kn/m2 and self-weight. Draw reinforcement in section. Use Limit State Method.	20	CO1	L6
Q. 5	Analyze intermediate panel and Calculate design bending moments for flat slab of size 7.0 m x 7.0 m. The slab is supported by columns of size 450 mm x 450 mm. Provide drop panel. Use M20 concrete design method Use direct design method Draw reinforcement in plan	20	CO2	L6
Q.6	Perform preliminary analysis upto stress distribution for compatibility only for the folded plate shown. Thickness of plate 110 mm. Loading on inclined plate 200 kg/m2 and loading on horizontal plate 250 kg/m2. Length of plate 20 m	20	CO2	L5

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

TERM END EXAMINATION JULY 2023

Q. 7	Design Silo to store Rice. The dimensions of silo as shown in the figure. Use Airy's theory Assume unit weight of rice as $6500N/m3$. Use M20 grade of concrete and mild steel reinforcement Fe 250. Perform calculations at h =4 m, 8m, 12m, 16m and 18 m Use μ = 0.46 and μ '=0.44	20	CO2	L6	
	18m (CID)				
Notes	12.25 m				

Notes - 1)
$$h = b \left[u + \sqrt{\frac{u(1+u^2)}{u+u}} \right]$$

$$P_{h} = wh \left[\sqrt{\frac{(1+u^2)}{(1+u^2)}} + u(u+u) \right]^{2}$$

$$(u+u') \left[\sqrt{\frac{2h}{b}(u+u')} + \sqrt{(1-uu')} \right]$$

$$P_{n} = \frac{wh^{2}}{2(u+u')^{2}} \left[\sqrt{\frac{2h}{b}(u+u')} + \sqrt{(1-uu')} - \sqrt{(1+u^2)} \right]^{2}$$

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

TERM END EXAMINATION JULY 2023

Table for slab moment coefficients

(Clauses D-1.1 and 24.4.1)

Cas No	- 7 1	************	Co	ong Span vefficients i _s for All Values of						
		1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	1/1.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(4)	(10)	(11)
1	Interior Panels:									
	Negative moment as continuous edge	0.032	0.037	0.043	0.047	0.051	0.053	0.060	0.065	0.032
	Positive moment at mid-span	0.024	0.028	0.032	0.036	0.039	0.041	0.045	0.049	0.024
2	One Shart Edge Continuous:									
	Negative moment at continuous edge	0.037	0.043	0.048	0.051	0.055	0.057	0.064	0.068	0.037
	Positive moment at and-span	0.028	0.032	0.036	0.039	0.041	0,044	0.048	0.052	0,028
1	One Long Edge Discontinuous;									
	Negative moment at continuous edge	0.037	0.044	0.052	0.057	0.063	0.067	0.077	0.085	0.017
	Positive moment at mid-span	0.02X	0.033	0.030	0.044	0.047	0.051	0.059	0.065	0.028
4	Two Adjacent Edges Discontinuous:									
	Negative moment at continuous edge	0.047	0.053	0.060	0.065	0.071	0.075	0.084	0.091	0.047
	Positive moment at mid-span	0.035	0.040	0.045	0.049	0.053	0.056	0.063	0,069	0.035

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

End –SEM Examinations, JULY 2023

Duration: Total Time allotted will be 3Hr.

Class: M. TECH(CM) & MTECH(STR)

Semester: II

Program: Civil

3/12/12

Name of the Course-Operational Research Course Code: OE-PG03 PC-MTCM-202

Instructions: F. Y. M. Tech (Stru/Cons. mgt.) Sem-II

1. Draw neat diagrams

2. Assume suitable data if necessary and state the clearly.

									Points	CO	BL	PI
Q1(A)	Solve Followi	ng LI	PP by u	sing Kı	ıhn-Tu	ckers co	onditio	ns	10	2,4	4	2.2.2
	Max Z = -(X-	$(2)^2 - 2$	$2(Y-1)^2$									
	Subject to,	,	` ,							ł		
	$X+4Y \le 3$									İ		
	$-X+Y \le 0$											
	$X, Y \ge 0$											
									1			er van Broken were ver
Q1(B)	There are 7 jo				_	_						
	A and B in the	e orde	er AB. T	The pro	cessing	times	(in hou	ırs) are	10	3,4	3	4.2.1
	given as			1	1	1		T 1				
	JOB	J1	J2	J3	J4	J5	J6	J7				
	MACHINE A	3	12	15	6	10	11	9				
	MACHINE	8	10	10	6	12	1	3				
	В											
	Determine a s total elapsed t I) the minimu	ime T	. Also	obtain:		will mi	nimise	the				
	ii) the idle tim	ii) the idle time for each of the machines.										
Q2	Solve followi Max Z =2X1-	_	P by re	vised s	implex	method	d		20	1,2	4	3.2.1

	Subject to,	1		1	1
	3X1+4X2 <= 6			1	
	$6X1+X2 \le 3$				
	X1, X2 >= 0				
	Explain all types of cost involved in Deterministic inventory	10	2,4	4	4.3.2
Q3(A)	model	Ì			
	If for a project, annual demand is 10000/year, order				
	cost=300/order, carrying cost = Rs 4/unit/year then				4
	1. Estimate Economic order quantity and Total cost of				
	project				
	2. Draw graphs for all types of costs in EOQ concept.		1		
Q3(B)					
	6Q10	10	2,4	3	2.3.2
				i	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1		
4.5	source \ essession		1		
	30 010				
	(2)/10				
		İ			
	Find the maximum flow above in the Model.				
	Continuous amino at the alimin at the mate of 9/hour (Paisson)	10	3,4	4	2.3.2
04(4)	Customers arrive at the clinic at the rate of 8/hour (Poisson's Ratio), And doctor can serve at the rate of 9/hour	10	3,4	4	2.3.2
Q4(A)	(Exponential),				
ı	1. What is the probability that customer does not join the				
	que and walks in doctor's room?			į	
	2. What is the probability that there is no que?			ĺ	
	3. What is the probability that there are 10 customers in				
	the que?				
	4. What is the expected number in the system?				
	5. What is the expected waiting time in the que?				
	5. What is the expected watering time in the que				
		1			
Q4(B)	Consider following parametric linear programming problem-	10	2,4	3	4.3.3
	7 (40 0.) THE CONTROL			İ	
	Max Z = (10 - 2t)X1 + (5 - 3t)X2				
	S.T. $8X1 + 2X2 \le 48$				
	$2X1 + 4X2 \le 24$				
	$X1, X2, t \ge 0$				
	ARR 9 ARW9 6 - V				
	Perform parametric analysis with respect to objective function				
	coefficient and find the range of t over which optimal solution				
	will not change.				
	Use following linear programming The optimum table –				

T										
	СВ,	Basic	10 S	0	0 S ₂	Solution				
	10	variable Xi	1	177 -1714	4/7/4	36/7 24/7				
		7,	0 0	15/14 -15/14	3/1	480/7				
Q5	Minimise $f(x)$ $X_2 * X_3 + X_1$ Where, X1, X Solve above 1	$* X_2 * X_2$ $(2, X_3) =$	ζ ₃ = 0			X ₁ ⁻³ *	20	1,3	5	3.2.1
Q6	A trader stock of the season each and he season met on demain Rs. 15. Any in Holding cost of the price. Tollows:	and cannells at Rs and, the tra tem unso during th	ot re-orde 50 each. ader has eald will have be period i	r. The iter For any it stimated a ve a salvag s estimate	n costs hi tem that c goodwill ge value c d to be 10	m Rs. 25 annot be cost of of Rs. 10.	10	3,1	5	3.2.2
	Unit Stocked Probability of demand	0.35	0.25	0.20	0.15	0.05				
Q6(B)	Determine the Pay-off Mate A factory manufacture hours are required hours and 1.5 machine hour Profit per unit as LPP.	nufacture one unit uired. To labour h rs and 24	es two pro of A, 1.5 i manufact nours are r 0 labour h	ducts A ar nachine he ture producequired. In lours are a	nd B. To ours and 2 ot B, 2.5 n a month vailable.	2.5 labour machine , 300	10	1,4	5	3.2.1
Q7(A)	Activity 1-2 1-3 1-4 2-7		8	0			10	1,3	4	1.2.3
**************************************	3-4 4-5		3 7							

	4-7			0					
	5-6			4					
	5-7			3					
	5-8			6					
	6-8			5					
	7-8			5					
Q7(B)	1-2 1-3 1-4 2-5 3-5 4-6	n given i	on(weeks) m 1 4 2 1 5 6	b 7 7 8 1 14 8 15	ath using	10	1,3	4	1.2.3
	I) II) III) V)	Constru Find exactivity Find cr time What is on or be What is	ct the project the project the probate fore 18 we the probate the property that the project the probate the probate the probate the property that the property the property that the property the property that the property the property that the pro	ect network uration and and expectability of coreeks?	variance of ed project dun pleting the projecting the project?	ration			

.

.

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score

									of the Z so	
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	0153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	:46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

L6666	_											
\$26666 \$			L6666 [.]		96666	96666	96666	96666	96666	\$6666.	2 6666.	1
\$8666 \$866			56666.	56666.	4 6666.	⊅6666 °	46666 .	≯6666 °	£6666.	£6666.	£6666.	8.£
\$\frac{8866}{9866} \ \frac{8866}{8866} \ \frac{8866}{8866} \ \frac{18666}{8866} \ \frac{18666}{18666} \ \frac{1866}{18666}		76666	76666	76666	76666	16666	16666	06666	06666	06666	68666	<i>L</i> .€
\$\frac{92666}{92666} \ \frac{92666}{92666} \ \frac{9266}{92666} \ \frac{9266}{92666} \ \frac{9266}{92666} \ \frac{9266}{92666} \ \frac{9266}{92666} \ \frac{9266}{9266} \ \frac{9266}{92666} \frac{9266}{92666} \frac{9266}{9266} \ \frac{9266}{92666} \ \frac{9266}{9266} \ \frac{9266}{9266}		68666.	88666.	88666.	78666.	L8666°	98666	98666	₹8666	28666,	1 8666°	3. £
\$\frac{9666}{90866}\$ \text{ \t		£8666.	£8666.	28666,	18666.	18666.	08666.	64666.	87666.	87666.	LL666 ⁻	₹.£
05666		94666	S7666.	<i>₽</i> ∠666.	£7699.	ZL666°	17666.	07666.	69666	89666	99666	3,4
Compage Comp		£9666 [.]	7 9666°	79666	19666	09666	85666.	L\$666°	5 5666.	£\$666.	Z\$666°	£.£
00666 96866 66866 68866 98866 78866 78866 78866 78866 678	-	0≥666.	84666.	94666.	4 4666.	2 4666.	04666	8£666.	9£666	4£666 .	18666.	3.2
19866 95866 15866 94866 14866 94866 14866 94866 14866 94866 14866 94866 14866 94866 14866 94866 14866 94866 14866 94866 94866 14866 9486		67666	97666	42666 .	12666.	81666.	91666	£1666.	01666	90666	£0666.	1.8
\$\frac{9\color{1}}{9\color{1}}\$ \$\frac{1}{2\color{1}}\$ \$\frac{1}{		00666	96866	£6866°	68866	98866	28866.	87866.	<i>₽</i> ∠866°	69866	₹9866	3.0
95L66 87L66 07L66 11L66 70L66 66966 68966 75SEL 75SEL <th< td=""><th></th><td>19866.</td><td>9\$866</td><td>12866.</td><td>94866.</td><td>14866.</td><td>98866.</td><td>18866.</td><td>52866.</td><td>61866.</td><td>£1899.</td><td>6.2</td></th<>		19866.	9\$866	12866.	94866.	14866.	98866.	18866.	52866.	61866.	£1899.	6.2
\$6015 \$756 \$8165 \$6455 \$8265 \$88165 \$6425 \$2625 \$4666 \$2856 \$2856 \$2866 \$2866 \$2856 \$2866 \$2866 \$2866 \$2866 \$2866 \$2866 \$2866 \$2865 \$1000 <th< td=""><th></th><td>7086e,</td><td>10866.</td><td>S6766.</td><td>88766.</td><td>18766.</td><td><i>₹LL</i>66.</td><td>L9L66[°]</td><td>09/66</td><td>ZS766.</td><td>44766.</td><td>8.2</td></th<>		7086e,	10866.	S6766.	88766.	18766.	<i>₹LL</i> 66.	L9L66 [°]	09/66	ZS766.	44 766.	8.2
SEREY. CAPERS. ABSER. OPERS. CAPERS. C		9£766.	82766.	02766.	11766.	20766.	£6966°	£8966 [.]	<i>₽</i> ∠966 [°]	†9966 [°]	£\$966.	<i>L</i> .2
604163 60472 26222 6612		£ 1 966.	26966.	12966	60966	86566.	28266,	£7266.	09\$66	Lħ\$66°	₽£\$66°	9.2
60410. 5011.5. 6470.5. 2622. 7661.5. 2622. 7661.5. 77.88.7		02266.	90566	76466.	LL+66°	19466.	94466.	05466.	£1466.	96£66'	67£66.	2.5
60410. 6227. C4622. C4612. C4112. C4112. C4622. C4622. </td <th></th> <td>19866.</td> <td>£4£66.</td> <td>42866.</td> <td>20566.</td> <td>98766</td> <td>99766</td> <td>54266.</td> <td>₽7766.</td> <td>20266.</td> <td>08166.</td> <td>7.4</td>		19866.	£4£66.	42866.	20566.	98766	99766	54266.	₽ 7766.	20266.	08166.	7.4
88ESC. 28IEC. 067CZ. 26EZZ. 46EZZ. 76EZZ. 76ZZ.		85166.	4£199,	11166.	98066	19066	9£066.	01066	£8686.	98686	82686.	2.3
888ES. 881ES. 067ZS. 26EZS. 46Q1S. 26EZS. 46Q1S. 26EZS. 46Q1S. 26EZS. 46Q1S. 26EZS. 46Q1S. 26EZS. 46Q1S. 26EZS. 70Q0S. 20Q0S. 10Q0S. 10Q0S.<		66886.	07886.	0 4886.	60886.	87786.	S4786.	£1786.	64986	S4986'	01986	2.2
888ES. 881ES. 067ZS. 266ZS. 469IS. 262ZS. 469IS. 262ZS. 469IS. 262ZS. 469IS. 262ZS. 71ZS. 077AP. 085AS. 100000. 0.0 2627S. 2417S. 246ZS. 246ZS. 762ZS. 762ZSS. 762ZSS. 762ZSS. 762ZSS.		<i>₽</i> 7286.	7£28 <i>9.</i>	00286.	19486'	22486.	28886.	14886.	00£86.	L\$786.	41286 .	1.2
882EC: 2417C: 6470C: 265CC: 4661C: 266CC: 4661C: 265CC: 466CC: 666CC: 666CC:<		69186.	42186 .	LL086.	0£086.	28676.	25676.	28876.	18876.	8 <i>LLL</i> 6.	S2776.	0.2
88282. 88182. 09722. 29282. 49912. 79282. 771 71 <t< td=""><th>_</th><td>076.</td><td>\$1946</td><td>85576.</td><td>00279.</td><td>I++76.</td><td>18879.</td><td>.97320</td><td><i>T</i>22<i>T</i>6.</td><td>£6176.</td><td>82176.</td><td>6°I</td></t<>	_	076.	\$1946	85576.	00279.	I++76.	18879.	.97320	<i>T</i> 22 <i>T</i> 6.	£6176.	82176.	6°I
88282. 88182. 06722. 26622. 46612. 26812. 76112. 88702. 66602. 00002. 0,0 26272. 24172. 64762. 26622. 46612. 26212. 76112. 88702. 66002. 00002. 0,0 26272. 24172. 64762. 2622. 46612. 26212. 7712. 88702. 00002. 0,0 60413. 35013. 24602. 2462.		790 <i>L</i> 6	\$6696	97696	98896.	<i>48</i> 796.	21796.	8£996.	79596	£8 1 96.	L0496°	8.1
882E2. 881E2. 09722. 26522. 49912. 26212. 79112. 88702. 09002. 0,0 26272. 24172. 94702. 26222. 49912. 26212. 79112. 89702. 99822. 1,0 26272. 24172. 94702. 94822. 77122. 9622. 77122. 9622. 1,0 60410. 32010. 24900. 77200. 17892. 88860. 76260. 27202. 17892. 27122. 1,0 60410. 32010. 24900. 76200. 17892. 88860. 76260. 26202.		LZ£96.	94296.	1 9196.	08096.	1 6656,	L 0 6\$6	81826.	8272e.	L£956.	£4226.	L'I
882E2. 881E2. 09722. 29622. 49912. 29212. 79112. 88702. 99602. 00002. 0.0 26272. 24172. 94762. 24222. 49912. 2622. 79212. 77122. 97742. 98622. 1.0 26272. 24172. 94762. 24222. 74262. 76222. 76222. 77122. 97742. 7712		64486.	75556.	<i>\$</i> 256.	45126 .	£2026.	05646	24846.	85746.	0£946.	.64250	9.1
882E2. 881E2. 09722. 20622. 40912. 20622. 40912. 20622. 40912. 20622. 40912. 20622. 70000. 0.0 0.0 26272. 24172. 64762. 36562. 26622. 76622. 76212. 76112. 86702. 66602. 00002. 0.0 60413. 3617. 24802. 26622. 76822. 27122. 37742. 68622. 1.0 60413. 3617. 24802. 76262. 76262. 76262. 27122. 88622. 76622.		80446.	56246.	6LI46.	29046.	£46£6.	22856.	66986	472£9.	84486.	93316	S.I
882EC. 881EC. 097ZC. 29EZC. 49EZC.			95056.	22626.	S8726.	L+976.	7022 <i>6</i> ,	49826.	02226.	£7026.	42616.	t'I
88282. 88182. 09722. 26222. 49612. 26212. 76112. 86702. 66602. 00002. 0.0 28282. 28182. 09722. 26222. 49612. 26212. 76112. 86702. 66602. 00002. 0.0 28282. 24172. 64702. 64702. 66222. 76212. 762		<i>bLL</i> 16.	17916	99416.	60£16.	61116.	88606.	₽ 2806.	85906.	06406.	02506.	E.1
88282. 88182. 06722. 20822. 40812. 20812. 70812. 88702. 00002. 0.0 282872. 24172. 04762. 38262. 24822. 70822. 27122. 37742. 08842. 88082. 1.0 282872. 24172. 04702. 26822. 78282. 27122. 08842. 88082. 1.0 60413. 32013. 24803. 7203. 17892. 88462. 26002. 37282. 27123. 16713. 8.0 67123. 60843. 18443. 78247. 78247. 78269. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267. 78267.		<i>۲</i> ₽106.	£7668.	96L68	L1968.	₹£468.	18268.	\$90 68.	LL888.	98988.	£6488.	1.1
88282. 88182. 06722. 20622. 40612. 20612. 70112. 88702. 90602. 00002. 0.0 26272. 24172. 94782. 2622. 40612. 20622. 70623. 27122. 37742. 08642. 1.0 26272. 24172. 94702. 9622. 7322. 27122. 37742. 98622. 1.0 26273. 24172. 24003. 7200. 17892. 88492. 260062. 26220. 27120. 16710. 8.0 67120. 60480. 66480. 66480. 66480. 66480. 66620. 26220. 27120. 16710. 8.0 66780. 66780. 66480. 66480. 66620. 66620. 26220. 27120. 16710. 8.0 66780. 66780. 66880. 66880. 66620. 66620. 66620. 26220. 27120. 16710. 8.0 66780. 66780. 66880. 6660. 6660. 6660. 6660. 6660. 6660. 6660. 6660. 6660. 6660. 66		86788.	00188.	00678.	86948	£6478.	98778.	97078.	1 9898.	02998.	££433.	1.1
88282. 88182. 06722. 26522. 46912. 26212. 76112. 86702. 66502. 00002. 0.0 28282. 28282. 28282. 78282. 27122. 87742. 08542. 68622. 1.0 282872. 24172. 64762. 82682. 78282. 27122. 87742. 08542. 6862. 78282. 77122. 8862. 78282. 77122. 77123. 16713. 87727. 7826		₽IZ98°	£6628.	69728.	£ 1 228.	41528.	€80≷8.	64848.	41948.	275 1 8.	48134	0.1
88282. 88182. 06722. 26522. 46912. 26212. 76112. 86702. 66502. 00002. 0.0 28282. 24172. 64762. 36262. 76822. 77122. 37742. 08842. 8862. 1.0 60413. 3010. 24300. 7200. 17862. 88462. 26062. 22220. 27123. 16713. 6.0 86783. 68483. 18440. 82046. 8868. 70866. 0626. 22226. 27120. 16716. 6.0 60427. 40917. <t< th=""><th></th><th>168£8.</th><th>94988.</th><th>86558.</th><th>74188.</th><th>468<u>2</u>8.</th><th>6£928,</th><th>18528.</th><th>12128.</th><th>65818.</th><th>₽6218.</th><th>6.0</th></t<>		168£8.	94988.	86558.	74188.	 468 <u>2</u> 8.	6£928,	18528.	12128.	65818.	₽6218.	6.0
882E2. 881E2. 0672Z. 265Z. 4691Z. 265Z. 761IZ. 8670Z. 0000Z. 0.00 262Z. 881E2. 067ZZ. 265ZZ. 4691Z. 262ZZ. 761IZ. 8670Z. 0000Z. 0000Z. 0.0 262ZZ. 241ZZ. 241ZZZ. 241ZZZ. 262ZZ. 262ZZ. 262ZZ. 271ZZZ. 262ZZZ. 262ZZZ. 271ZZZ. 262ZZZ. 262ZZZ. <th></th> <th>72£18.</th> <th>72018.</th> <th>₹8708.</th> <th>11208.</th> <th>46208.</th> <th>SS667.</th> <th>£7967.</th> <th>68£67.</th> <th>£01<i>6L</i></th> <th>41887.</th> <th>8.0</th>		72£18.	72018 .	₹8708.	11208.	46208 .	SS667.	£7967.	68£67.	£01 <i>6L</i>	41887.	8.0
88282. 88182. 06722. 26822. 46912. 26812. 76112. 88702. 66802. 00002. 0.0 28282. 28182. 06722. 26822. 76822. 77122. 88742. 68622. 70822. 77122. 88742. 68622. 70822. 77122. 88742. 68622. 70822. 77122. 88742. 68622. 70823. 77122. 88622. 70823. 77122. 88622. 70823. 70823. 77123. 16713. 8.0 8.0 8.0 88043.					L£9 <i>LL</i> .	TEETT.	S £0 <i>LL</i>	0£ <i>L</i> 9 <i>L</i> .	4249 <i>L</i> .	S119L'	₽08 <i>5</i> Ľ	7.0
88282. 88182. 06722. 26822. 46912. 26212. 76112. 86702. 66602. 00002. 0.0 28282. 28182. 06722. 26222. 46912. 26212. 76112. 86702. 66602. 00002. 0.0 282872. 24172. 64762. 32622. 73222. 27122. 37742. 6862. 1.0 60413. 32016. 24303. 7203. 17862. 88462. 26062. 30782. 71128. 32672. 2.0 67123. 67843. 68843. 7203. 17862. 68842. 68962. 70863. 72823. 77123. 16713. 6.0 67124. 40917. 40817. 4				L\$84L.	7£ \$4 <i>T.</i>	S174L.	16887.	595£7.	T £ <u>Z</u> £ <u>T</u> .	7062T.	STS2T,	9.0
882E2. 881E2. 0672Z. 265Z2. 4691Z. 2621Z. 7611Z. 8670Z. 6650Z. 0000Z. 0.0 2E27Z. 2417Z. 6476Z. 3262Z. 732ZZ. 271ZZ. 377ZZ. 0854Z. 686ZZ. 1.0 60413. 32016. 24303. 72203. 1786Z. 6846Z. 2606Z. 3078Z. 71E8Z. 3267Z. 2.0 671Z3. 60843. 16443. 82043. 68863. 70663. 069Z3. 222Z3. 271Z3. 19713. 6.0		0 1 227.					0450L.	4610L°	<i>L</i> ₽869°	£6 1 69°	94169.	2.0
88282. 88182. 09722. 20822. 40912. 20812. 70112. 80702. 00002. 0.00 282872. 24172. 04702. 08602. 20822. 70822. 27122. 07122. 08642. 68662. 1.0 60410. 0400. 0400. 7200. 17802. 68402. 20002. 71682. 00002. 0.0	_	£6783.	68439	28089.	₽ 2779.	1 9€79.	£0078.	04999	9L799	01659.	74259.	4.0
88282. 88182. 06722. 26522. 46912. 26212. 76112. 86702. 66502. 00002. 0.0 26272. 24172. 64762. 32622. 73222. 27122. 37742. 08542. 58652. 1.0		£L139.	£0849°	16443.	85049.	£89£9.	70EE9.	08629.	.62552	27125.	16713.	€.0
882E2. 881E2. 0672Z. 265ZZ. 469IZ. 262IZ. 76IIZ. 8670Z. 6650Z. 0000Z. 0.0 262TZ. 241TZ. 64TDZ. 325DZ. 27IZZ. 37TAZ. 085AZ. 686EZ. 1.0		60419.	97019.	Z 1 909.	L\$709°	1786 <i>2.</i>	£846 <i>5</i> .	5606S.	9078 <i>2.</i>	L1 E83.	926 <i>L</i> S.	2.0
88282. 88182. 09722. 29822. 49912. 29212. 79112. 89702. 99802. 00002. 0.0					95595.	7 96 <i>\$\$</i> .	L9\$\$\$ [.]	27122.	<i>9LL</i> ⊅\$`	08£42.	£89£2.	1.0
					26525.	4661 <i>5</i> .	565 I S.	L6115.	8670 c .	66£05.	0000 <i>c</i> .	0.0
	_				90°	20.	₽0 °	ε0.	20.	10.	00.	Z

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester - July 2023 Examinations

Program: F Y M.Tech

Duration: 3 Hours

Course Code: AU-PG-03

Maximum Points:100

Course Name: Disaster Management

Semester: II

Notes: 1. Answer any five questions.

2 All questions carry 20 points.

rent Engl

Q.No.	Questions	Points	СО	BL	Module No.
1	1.1 What is Disaster Risk Reduction? Explain in detail.	10	1	2	5
	1.2 Explain 'exposure' with an example and its drivers. Explain 'vulnerability' and its drivers.	10	1	2	5
2	2.1 What are the seven Global targets of the Sendai Framework for Disaster Risk Reduction? What was the status of Target E by 2019?	10	4	2	5
	2.2 What are the four Global priorities for action of the Sendai Framework for Disaster Risk Reduction?	10	4	2	5
3	3.1 What is Disaster Mitigation? How does it differ from other disaster management disciplines/phases? What are goals of Disaster Mitigation?	10	4	2	6
	3.2 Explain structural and non-structural activities in Disaster Mitigation. What are mitigation strategies for floods?	10	3	2	6
4	4.1 What is the aim of Disaster/Emergency Response? List out the key activities and elements of Disaster Response.	10	3	3	4
	4.2 Explain the three Humanitarian Principles that Humanitarian agencies must observe while responding to Disasters.				•
		10	3	3	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - July 2023 Examinations

Q.No.	Questions	Points	СО	BL	Module No.
5	5.1 What are the three levels and responsibilities of Disaster Management Authorities specified in Disaster Management Act, 2005? What has the Act been criticized for?	10	4	2	4
	5.2 Riverine flooding is perhaps the most critical climate- related hazard in India. Explain.	10	4	2	3
6	6.1 With the help of a diagram explain the four phases of the Disaster Management Cycle. Mark the point in the cycle where the disaster occurs.	10	2	2	1
	6.2 Explain the causes and typical adverse effects of Floods.	10	3	2	2
7	7.1 Explain the four interrelated components involved in Community Risk assessment.	10	2	2	5
	7.2. List out ten focus areas pertaining to strategies for survival from disasters.	10	4	2	5
	•				